AREA OF ANY TRIANGLE

Pearson Edexcel - Thursday 8 November 2018 - Paper 2 (Calculator) Higher Tier

1.

13	84.9	P1	shows a process to find the radius or diameter eg $44 = 2 \times \pi \times r$ or $r = \frac{22}{\pi}$ or $d = \frac{44}{\pi}$ or $r = 7.0028$ or $d = 14.0056$	Allow r in the range 7 to 7.1 and d in the range 14 to 14.1 Could be shown on the diagram.
		P1	(dep on P1) complete method to find the area eg $\frac{1}{2} \times \frac{a^{2}}{2} \times \frac{14}{2} \times 1$	
		A1	for answer in the range 84.8 to 85	If the correct answer in the range is given in working and then rounded incorrectly award full marks.

Pearson Edexcel - Thursday 24 May 2018 - Paper 1 (Non-Calculator) Higher Tier

2.

8	216	P1	for process to work with ratio	
			eg $72 \div (3 + 4 + 5) (= 6)$ or $72 \div 12 (= 6)$	
		P1	for process to find length of base or height of triangle	
			eg $3 \times \text{``6''} (= 18)$ or $4 \times \text{``6''} (= 24)$	
			OR process to find area scale factor	
			eg "6" × "6" (= 36)	
		P1	complete process to find the area of the triangle	
			eg $\frac{1}{2}$ × "18" × "24" or $\frac{1}{2}$ × 3 × 4 × "6" ²	
		A1	cao	

Pearson Edexcel - Tuesday 13 June 2017 - Paper 3 (Calculator) Higher Tier

3.

15	2.63	P1	for setting up the expression $\frac{1}{2}(x+3)(2x-1)\sin 45$ (may be seen in an equation)
		P1	(dep) for expanding the brackets in the expression or for the equation
			$\frac{1}{2}(x+3)(2x-1)\sin 45 = 6\sqrt{2}$ oe
		Pl	(dep) for the process to set up the equation and rearrange to the form $ax^2 + bx + c = d$ e.g. to $2x^2 + 5x - 27 = 0$ or $24 = 2x^2 + 5x - 3$
		P1	(dep) for substitution into the quadratic formula e.g. $\frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times -27}}{4}$
		A1	for 2.63(10436)

Pearson Edexcel - Specimen Papers Set 2 - Paper 1 (Non-Calculator) Higher Tier

18		48	P1 P1 P1	Identifies that $16 \div 8 = 2$ so $PL=2NP$ Process to find area of $LMN \ 8 \times (2+1)^2 \ (=72)$ Completes process to find area of LQM '72'-16 - 8 48 cao
----	--	----	----------------	---

Pearson Edexcel - Specimen Papers Set 2 - Paper 1 (Non-Calculator) Higher Tier

5.

22	60	P1 process to start problem eg draw diagram and find gradient of <i>OA</i> (= 3)	d
		P1 process to find equation of tangent with $m=-1/3$?	
		P1 process to find x-axis intercept of tangent P1 process to find area of triangle A1 cao	

Pearson Edexcel - Specimen Papers Set 2 - Paper 3 (Calculator) Higher Tier

6.

21	5	10.4	1 starts process by using cosir	e rule to find CD
			$eg(CD)^2 = 4.9^2 + 3.8^2 - 2 \times 4.9^2$	0×3.8×cos80 (=
			31.98)	
			1 uses sine rule to find angle	ACD or angle ADC
			$\sin C \sin 80 \sin D$	sin 80
			$\frac{\text{eg}}{3.8} = \frac{1}{5.655}$ or $\frac{1}{4.9} = \frac{1}{5.655}$	'5.655'
			1 uses sine rule to find BC or	BD
			BD '5.655'	
			$\frac{eg}{\sin 25} = \frac{\sin 33.6'}{\sin 33.6'}$	
			1 process to find area eg $1/2$ a	b sin C
			1 for 10.4 to 10.43	

Pearson Edexcel - Sample Paper 2 - (Calculator) Higher Tier

7.

21 (a)	130	P1 start to process eg draw a labelled triangle or use of sine rule $\frac{\sin Q}{8.7} = \frac{\sin 32}{5.2}$
		P1 process to find of $Q eg Q = \sin^{-1} \left[\frac{\sin 32}{5.2} \times 8.7 \right]$
		P1 process to find area of triangle <i>PRQ</i> .
(b)		A1 22.5 – 22.6 C1 angle <i>PRQ</i> is obtuse so need to find area of two triangles.

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

18		49.5	4	M1 for $\tan 54 = \frac{\text{height}}{6}$
				M1 for (height =) 6 × tan54 (=8.2-8.3)
				M1 for $\frac{1}{2}$ × '8.258' × 12
				A1 for 49.2 - 50
				OR
				M1 for $\cos 54 = \frac{6}{AC}$
				M1 for $(AC =)$ $\frac{6}{\cos 54}$ $(=10.2(07))$
				M1 for $\frac{1}{2} \times 12 \times '10.207' \times \sin 54$
				A1 for 49.2 - 50
				OR
				M1 for $\frac{AC}{\sin 54} = \frac{12}{\sin 72}$
				M1 for $(AC =)$ $\frac{12}{\sin 72} \times \sin 54 (=10.2(07))$
				M1 for $\frac{1}{2} \times 12 \times '10.207' \times \sin 54$
				A1 for 49.2 – 50
	 		_	

Pearson Edexcel - Tuesday 11 June 2013 - Paper 1 (Non-Calculator) Higher Tier

9.

20	· a	5x ²	4	M1 for $4x \times 4x$ M1 for $(2x \times 4x)/2$ or $(2x \times x)/2$ or $(3x \times 4x)/2$ M1(dep M2) for "16 x^2 " – "4 x^2 " – " x^2 " – "6 x^2 " A1 for $5x^2$
				OR M1 for $\sqrt{(2x)^2 + (4x)^2} = \sqrt{20x^2} = \sqrt{20} x$) M1 for $\sqrt{(x)^2 + (2x)^2} = \sqrt{5x^2} = \sqrt{5} x$) M1(dep M2) for $\frac{\sqrt{5} x^n \times \sqrt{20} x^n}{2} = \frac{\sqrt{100}}{2} x^2$) A1 for $5x^2$

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

10.

24	(a)	 18.2	2	M1 for $\frac{1}{2} \times 6 \times 7 \times \sin 60$ A1 for answer in range 18.1 to 18.2
	(b)	6.56	3	M1 for $6^2 + 7^2 - 2 \times 6 \times 7 \times \cos 60$ M1 for correct order of operation eg $36 + 49 - 42$ (=43) A1 for answer in range 6.55 to 6.56

Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

16	•	84	4	M1 for $x - 1 + 3x + 1 + 3x$ (= 56) or $7x = 56 + 1 - 1$
				or $3x(x-1)$ oe
				2
				M1 for $7x = 56$ or 8 seen
				M1 for 0.5×('8' – 1)×(3×'8')
				Al cao Ignore any statement of units.
				SC B2 for 8 as the answer or 7 identified as the height and 24
				identified as the base of the triangle.
				- Control of the cont

Pearson Edexcel - Monday 11 June 2012 - Paper 1 (Non-Calculator) Higher Tier

12.

18	$\frac{1}{2} \times 4 \times 3 = 6$	1.5	3	M1 for $\frac{1}{2} \times 4 \times 3$ oe
	$\left(\frac{1}{2}\right)^2 \times 6 =$			M1 for $\left(\frac{1}{2}\right)^2 \times \text{``6''}$
	- N 6			A1 cao
				OR
				M2 for $\frac{1}{2} \times 2 \times 1.5$ oe
				(M1 for triangle with all lengths $\frac{1}{2}$ corresponding
				lengths of triangle ABC seen in any position or vertices seen at (1, 1) (3,1) and (2.5, 2.5) or stated) Al cao
			6	111 040

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

24		20.2		
24	$\frac{AC}{AC} = \frac{8.7}{1.00}$	29.3	5	M1 for $\frac{AC}{\sin 49} = \frac{8.7}{\sin 64}$ oe
	sin49 sin64			
	$AC = \frac{8.7}{\sin 4} \times \sin 49$			M1 for $(AC =) \frac{8.7}{\sin 64} \times \sin 49$
	sin64			SIII 04
	(= 7.305)			A1 for 7.3(05)
	$\frac{1}{2} \times 8.7 \times 7.305 \times \sin(180 - 64 - 49)$			M1 for $\frac{1}{2} \times 8.7 \times 7.305 \times \sin(180 - 64 - 49)$
				A1 for 29.19 – 29.3
				OR
				BC 8.7
				M1 for $\frac{BC}{\sin(180 - 64 - 49)} = \frac{8.7}{\sin 64}$ oe
				M1 for $(BC =)$ $\frac{8.7}{\sin 6.4} \times \sin'67'$
				sin 64
				A1 for 8.9(10)
				M1 for $\frac{1}{2} \times 8.7 \times `8.910` \times \sin 49$
				A1 for 29.19 – 29.3
				OR
				$(X ext{ is point such that } AX ext{ is perpendicular to } BC)$
				M1 for $AX = 8.7 \times \sin 49 (= 6.565)$ or
				$XB = 8.7 \times \cos 49 \ (= 5.707)$
				M1 for $XB = 8.7 \times \cos 49 (= 5.707)$ and
				$CX = 6.565 \div \tan 64$ oe $(= 3.202)$
				A1 for 8.9(10) or 5.7(07) and 3.2(02)
				M1 for $\frac{1}{2}$ × '6.565' × ('5.707' + '3.202') oe
8				A1 for 29.19 – 29.3

Pearson Edexcel - Friday 12 November 2010 - Paper 4 (Calculator) Higher Tier

14.

1	5 × 8 ÷ 2	20	2	M1 for $5 \times 8 \div 2$ oe
				A1 cao

Pearson Edexcel - Friday 12 November 2010 - Paper 4 (Calculator) Higher Tier

15.

28 (a)	Area = ½ (8.3 × 10.5) sin 62° = 43.575 × 0.88294 = 38.47444136	38.5	2	M1 for ½ (8.3 × 10.5) sin 62° A1 for 38.4 - 38.5 SC M1A0 for ±32.2 (radians) or 36.0 (grad)
(b)	$QR^2 = 8.3^2 + 10.5^2$ $- 2(8.3)(10.5) \cos 62$ $= 68.89 + 110.25$ $- 174.3 \times 0.46947$ $= 179.14 - 81.828$ $QR = \sqrt{97.3111}$ $= 9.86463920$	9.86		M1 for correct substitution into cosine rule M1 (dep) for correct order of evaluation

Pearson Edexcel - Friday 11 June 2010 - Paper 4 (Calculator) Higher Tier

16.

12 (a)	0.5×6×14	42	2	M1 for 0.5×6×14 oe A1 cao
(b)	$\sqrt{6^2 + 14^2} = \sqrt{232}$	15.23	3	M1 for 6^2+14^2 or $36+196$ or 232 M1 for $\sqrt{36+196}$ or $\sqrt{232}$ A1 for answer in the range 15.2 to 15.3

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

17.

26	(a)	$0.5 \times 5 \times 8 \times \sin 75$	19.3	2	M1 for 0.5 × 5 × 8 × sin75 A1 for 19.3 – 19.32 SC M1A0 for 7.7(5) or –7.7(5) or 18.4(7) seen
	(b)	$AB^{2} = 5^{2} + 8^{2} - 2 \times 5 \times 8 \times \cos 75$ $= 25 + 64 - 80 \times \cos 75 = 68.29$ $AB = \sqrt{89 - 80 \times \cos 75}$ $= 8.264$	8.26	3	M1 for $AB^2 = 5^2 + 8^2 - 2 \times 5 \times 8 \times \cos 75$ M1 (dep) for $89 - 80 \cos 75$ A1 for $8.26 (4)$ SC M1M1A0 for $3.9(0)$ or $7.6(4)$ seen

OCR GSCE - Monday 9 November 2020 - Paper 6 (Calculator) Higher Tier

13	50	4	B1 for 2.5 oe soi	Final answer 20 implies B1 (from use
				of linear scale factor)
			M2 for $8 \times (5 \div 2)^2$ oe	
			or	
			M1 for $(5 \div 2)^2$ soi by 6.25 oe	6.25 scores B1M1
			Alternative method:	
			Alternative method: B1 for [AB : AC =] 2 : 5 oe soi	
			M2 for $(8 \div 2^2) \times 5^2$ oe	
			or	
			M1 for [area ratio] 2 ² : 5 ² oe soi	2 ² : 5 ² scores
			Alternative methods	
			Alternative method: B1 for 2.5 oe soi	
			B 1 101 2.5 06 301	
			M1 for numerical $\frac{b \times h}{2}$ = 8 where	May be seen in stages
			$b \times h = 16$, ,
			D ~ 11 - 10	
			M1 for $\frac{2.5 \text{ their } b \times 2.5 \text{ their } h}{2}$	
			2	
			If evidence of using 2 : 3 seen:	
			If evidence of using 2 : 3 seen: B0 for [AB : AC =] 2 : 3 or 1.5 oe soi	
			, ,	
			M2 for (8 ÷ 2 ²) × 3 ² oe	
			or	
			M1 for [area ratio] 2 ² : 3 ² or 1.5 ² oe soi	
			If no working:	
			SC1 for final answer 18	
			CC. IS. Milar allower 10	

OCR GSCE – Monday 12 November 2018 – Paper 6 (Calculator) Higher Tier

19	32.2 to 32.3	6	M2 for $x^2 - 10x + 19 = 0$ oe	Accept 32 after full correct method
			or M1 for $9^2 = 10^2 + x^2 - 2 \times 10 \times x \times \cos 60$	Use of cosine rule
			AND	FT their quadratic = 0
			M1FT for $\frac{10 \pm \sqrt{10^2 - 4 \times 1 \times 19}}{2}$	Alternative: M1 for $(x - 5)^2 - 6 = 0$
			A1 for $x = 7.45$ or $5 + \sqrt{6}$	Ignore 2.55 or $5-\sqrt{6}$
			AND	
			M1 for $\frac{1}{2} \times 10 \times their$ 7.45 × sin60	Their 7.45 should be from cosine rule followed by quadratic (not from measuring
			oe	etc.)
			Alternative	Use of sine rule
			$\mathbf{M1} \text{ for } \frac{\sin 60}{9} = \frac{\sin B}{10} \text{ oe }$	
			M1 for $\sin B = \frac{10}{9} \sin 60$ or better	Isolates sinB
			A1 for <i>B</i> = 74.2()	
			AND	
			M1 for <i>A</i> = 180 – 60 – <i>their</i> 74.2 soi by 45.8	Their 45.8 should be from sine rule followed
			AND	by 180 – <i>their</i> sine rule answer (not from measuring etc.)
			M1 for $\frac{1}{2} \times 9 \times 10 \times their \sin 45.8$	inicasuming etc.)

OCR GSCE – Thursday 24 May 2018 – Paper 4 (Calculator) Higher Tier

18	11.1 or 11.14 or 11.13[6] or accept 11 with supporting working.	6	M3 for correct cos rule with cos as subject e.g. [cos =] $\frac{6.4^2 + 5.8^2 - 3.9^2}{2 \times 6.4 \times 5.8}$	accept any correct method and they can find any angle, see additional guidance for the other angles
			or M2 for the above (M3) formula with one error or for $3.9^2 = 6.4^2 + 5.8^2 - 2 \times 6.4 \times 5.8 \times \cos[.]$ or M1 for this (M2) formula with one error AND $\mathbf{M2} \text{ for } \frac{1}{2} \times 6.4 \times 5.8 \times \sin(their36.87)$ or M1 for the use of this formula with one error	this angle (opposite 3.9) is 36.87 which implies M3